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A B S T R A C T   

We report the study of optical properties of Bismuth (Bi) thin films with different thicknesses (tBi = 25 nm, 20 
nm, 15 nm, and 5 nm) using spectroscopic ellipsometry in the visible – ultraviolet light range (1.4 – 5.3 eV). A 
broad absorption hump and three broad absorption peaks, as represented by the imaginary part of the dielectric 
constant and real part of optical conductivity, occur at 2.0 eV and 2.8 eV; 3.8 eV, and 5.0 eV, respectively, for tBi 
of 25 nm, 20 nm, and 15 nm. The absorption features might be related to electron transition involving px, py 

orbitals to pz orbital throughout the high symmetry line of Bi’s first Brillouin zone. These absorption peaks 
decreased as tBi decreased from 25 nm to 15 nm. However, a significant increase in those absorption peaks when 
tBi = 5 nm accompanied by extra absorption peaks at 2.6 eV, 3.0 eV, and 4.1 eV. This anomalous is possibly due 
to the transition from three-dimension to two-dimension by the quantum confinement effect, leading to the 
increase of density of state as the Bi goes to ultrathin-film thickness. We did the first principle calculation 
(density functional theory) based on bulk Bi and Bi thin film to support this observation. By using more precise 
optical properties of this material, our study may provide insight into the future development of Bi-enabled 
technologies.   

1. Introduction 

Bismuth (Bi) is a material that has excellent electronic and optical 
properties due to its unique electronic band structure, low carrier 
effective mass, and low carrier density [1–9]. The lower effective masses 
of the charge carriers at the Fermi level cause confinement effects, which 
may enhance the energy difference between the valence and conduction 
bands [10–12] and many researchers have predicted and investigated a 
semimetal-to-semiconductor transition in the nanoscale thickness 
domain [13,14]. Even though the transition to the semiconducting 
phase provides considerable application potential, it is still a topic of 
robust debate. Consideration must be given to the increased significance 
of surface states as the surface-to-volume ratio increases in very thin 
films. Many possible uses exist in the current industry, including su-
perconductivity, giant magnetoresistance, thermoelectric, optoelec-
tronic devices, photocatalytic, and batteries [15–23]. Bi nanostructures 
allow for the exploration and manipulation of material properties, 

making them attractive from both a physics and an application aspect. 
In bulk Bi, a weak overlap between valence and conduction bands 

yields the formation of free electrons and holes pocket in the vicinity of 
the Fermi level. The free electrons lie in the electron pocket at L point of 
Bi Brillouin zone and have a linear dispersion with a very small effective 
mass. Meanwhile, the holes reside in the hole pocket at A point of Bi 
Brillouin zone, and it has, on the contrary, a large effective mass 
[24–26]. This peculiar electronic band structure yields to the semi 
metallicity leading to exceptional features such as the observation of a 
large diamagnetism [27], high Seebeck thermoelectric coefficient [28], 
Hall effect [27,28], and even superconductivity [17,21]. On the other 
hand, Bi in the form of nanostructures sparked a broad interest recently 
[1,2]. Bi has been recognized as an essential component in 
two-dimensional topological insulators. Indeed, at their ultrathin con-
ditions, Bi films were theoretically projected to be two-dimensional to-
pological insulators [27,29]. Due to the very large Fermi wavelength 
(λF = 20 − 30 nm), the quantum confinement manifested in the 
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thickness of tens of nanometers for thin films or nanowires. Ishida 
demonstrated, in particular, that the surface states at the Γ and M points 
extend significantly into the core of the film [30]. As a result, the effect 
of quantum confinement is most apparent in these regions. The surface 
states of the films are also crucial in understanding the topological 
features of Bi and their development in two-dimensional films impacted 
by quantum confinement [31]. Moreover, since Bi is a heavy element, 
then very strong spin-orbit coupling (SOC) could be present. The inter-
play between SOC and several symmetries in the Bi crystalline leads to 
the observation of Rashba splitting and the topologically protected 
surface state of their band structure in the vicinity of the Fermi level, 
which is very important for application in spintronics and quantum 
computing [10,11,32,33]. 

Optical spectroscopy has been used to reveal the electronic structure 
of both Bi bulk and film [6,8,34–37]. The optical properties of bulk Bi 
are characterized by the presence of giant infrared absorption [38], 
plasmarons due to many-body effects at very low energy [39], and 
strong absorption in the visible – ultraviolet range [38,40]. Meanwhile, 
the Bi films provide almost similar optical properties as bulk Bi [40,6]. A 
recent optical study of Bi thin films in infrared to ultraviolet (0.05 eV to 
4 eV) with the thickness varied from 78 nm down to 17 nm done by 
Toudert et al. reveals that the dielectric function of the film possesses 
similar optical features to that of bulk. For the thickness of 11 nm, the 
dielectric function slightly deviated from that of bulk Bi, which might be 
caused by the effective mix between Bi and air rather than the quantum 
confinement effect, although the Bi layer has a discontinuous structure 
[6]. However, the quantum confinement effect could manifest in a Bi 
thin film that has a discontinuous structure for a thickness of less than 
11 nm [32]. If the quantum confinement effect is not present, then the 
absorption should decrease monotonically as the thickness decreases. 
Therefore it is crucial to study the role of quantum confinement in the 
optical properties of Bi films for very thin thickness (less than 11 nm) 
and broader optical range to provide us with a better understanding of 
the electronic structure of Bi films. Understanding the dielectric function 
of Bi nanostructures across a wide spectral range is required to fully 
realize the promise of such applications via reasonable nanostructure 
design. Because the performances of these films are significantly 
dependent on their thicknesses and dielectric functions, properly 
describing these characteristics of such Bi thin films for improved ap-
plications is very important. 

Here, we study the evolution of complex dielectric constant and 
optical conductivity of ultrathin Bi film with the thickness varied from 
tBi = 25 nm to tBi = 5 nm using spectroscopy ellipsometry in the optical 
range of 1.4 eV to 5.3 eV. Bi thin films of different thicknesses were 
deposited on Al2O3 substrate by radio frequency (RF) magnetron sput-
tering. In addition, we furthermore discuss the electronic states of Bi 
near the Fermi level as calculated with density functional theory (DFT). 
This study may offer some insight into the future development of Bi- 
enabled technology by using more precise optical properties of this 
material. 

2. Experimental details 

2.1. Sample preparation 

High-purity Bismuth (Bi metal 4 N target, ∅ 101.6 × t 5, 99.99%) 
and alumina (Al2O3 4 N target, ∅ 101.6 × t 5, 99.99%) were purchased 
from Kojundo Chemical Laboratory Co., Ltd., Japan. The Bi thin films 
were fabricated by RF magnetron sputtering on the Al2O3 with a 
thickness of 200 nm that is coated on a glass substrate (25.4 × 76.2 mm) 
at room temperature. Prior to deposition, the glass substrate was 
sequentially cleaned with isopropanol, acetone, ethanol, and deionized 
(DI) water. During the process of depositing the film, the power used for 
RF sputtering was 40 W, and the Argon gas pressure was maintained at 4 
Pa. The substrate temperature was kept at 100 ◦C, and the target- 
substrate distance was fixed at 10 cm for all films. All films were 

deposited for 30 min to produce films of Al2O3 and Bi with a thickness of 
several hundred nanometers, approximately 167 nm, which is deter-
mined using a KLA Tencor Alpha-Step IQ Profilometer, yielding to the 
deposition rate of 0.093 nm/s. The Bi deposition time was adjusted 
based on the Bi deposition rate to obtain films with nominal thicknesses, 
ranging from 5 nm to 25 nm. As for Al2O3, the deposition time was 
adjusted based on the same deposition rate to obtain the Al2O3 film with 
nominal thickness of 200 nm. The thickness of film was determined 
directly during fabrication by adjusting the sputtering time of the films 
by the following empirical equation: t = d

v, where t, d, and v are the 
sputtering deposition time, the thickness of the Bi thin film, and the 
sputtering deposition rate, respectively, similar to that described pre-
viously [35,41,42]. The deposition parameters for preparing the films 
are shown in Table 1. 

A scanning electron microscope SEM (JSM-IT200 operating at 20 kV) 
was used to characterize the cross-section topography. The surface 
morphology and roughness were investigated using atomic force mi-
croscopy AFM (Park Systems). 

2.2. Spectroscopic ellipsometry measurements 

The spectroscopic ellipsometry (SE) measurements were carried out 
with homemade rotating analyzer ellipsometry (RAE) in the photon 
energy range of 1.4 – 5.3 eV, as described in previous works [43–45]. 
The measurement was performed at an incident angle (θ0) of 70◦, and 
the polarizer angle was fixed at 45◦. The optical constants of Bi thin film 
were extracted using the 5-layer optical Fresnel model given in Fig. 1. 
The model consists of air/EMA/Bi/alumina/glass in which we include 
the Bruggeman effective medium approximation (EMA) layer that con-
stitutes mixed between the fraction of air and fraction of Bi film. The 
relation between the SE parameters (ψ and Δ) and the optical constant is 
given by [46,47]: 

ρ ≡ tan(ψ)exp(iΔ) ≡,
r,01,234,p,

r,01,234,s
(1) 

The r,01,234,p(r,01,234,s) represents the reflectivity coefficient of p(s) 
polarized light of our 5-layer optical model, which is given by: 

r,012,34 =
r01 + r1234exp(− i2β1)

1 + r01r1234exp(− i2β1)
(2.a)  

r1234 =
r12 + (r23 + r34exp(− i2β3))exp(− i2β2)

1 + r12(1 + r23r34exp(− i2β3))exp(− i2β2)
(2.b)  

where, β1 = (2πd1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ε1 − ε0sin2θ0

√
)/λ, β2 = (2πd2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ε2 − ε0sin2θ0

√
)/λ, 

and β3 = (2πd3
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ε3 − ε0sin2θ0

√
)/λ. The d1, d2, and d3 are the thickness of 

the EMA layer, Bi layer, and alumina layer; meanwhile, the ε1, ε2, and ε3 
denote their complex dielectric constant, respectively. 

The reflectivity coefficient of the consecutive layer can be calculated 
using the Fresnel equation [46,47]: 

rmn,p =

̅̅̅̅
εn
εm

√
(εm − ε0sin2θ0)

1
2 −

̅̅̅̅
εm
εn

√
(εn − ε0sin2θ0)

1
2

̅̅̅̅
εn
εm

√
(εm − ε0sin2θ0)

1
2 +

̅̅̅̅
εm
εn

√
(εn − ε0sin2θ0)

1
2

(3.a)  

Table 1 
List of conditions for preparing Bi and Al2O3 films by RF sputtering.  

Sample Deposition time t (s) Deposition rate v (nm/s) Thickness d (nm) 

tBi = 25 nm 269 0.093 25 
tBi = 20 nm 216 0.093 20 
tBi = 15 nm 162 0.093 15 
tBi = 5 nm 54 0.093 5 
Al2O3 2151 0.093 200  
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rmn,s =
(εm − ε0sin2θ0)

1
2 − (εn − ε0sin2θ0)

1
2

(εm − ε0sin2θ0)
1
2 + (εn − ε0sin2θ0)

1
2

(3.b)  

where m and n represent the consecutive index. The fitting procedure 
was conducted by best matching ψ and Δ data from the experiment with 
Cauchy, Drude-Lorentz, and the Bruggeman EMA model. The Cauchy 
model was used for transparent material that we used in this study, i.e., 
alumina and glass, which is given by: 

N = A +
B
λ2 +

C
λ4 + …; k = 0 (4)  

where A, B, and C are fitting constants. The fitting result of the bulk glass 
and Al2O3 films using Cauchy models is tabulated in Table 2. These 
parameters were constant for each thickness, while only the Drude- 
Lorentz parameters were adjusted. 

The free parameters used were the transfer frequency, which is 
related to the peak position (ω0 ), the oscillator peak, which is related to 
the plasma frequency (ωp), the width of the oscillator (Γ), the thickness 
of Bi layer (d2), and the thickness of the alumina substrate (d3). 
Furthermore, the Drude-Lorentz model was used for metallic materials 
in this study to model the Bi layer. In contrast, the Bruggeman EMA 
theory was used to model the mix between air and Bi layer. The Brug-
geman EMA seems to be caused by the roughness and morphology of a 
thin layer of Bi that is uneven to form an island [35,6]. 

By measuring Ψ and Δ, the optical constants of the samples can be 
calculated. However, this is not a simplistic procedure since the sample 
must be modelled, and the data produced by the model should be 
compared to the experimental result while adjusting the parameters, 
such as optical constants and film thickness. The value that closely 
matches the experimental data is determined during this iteration pro-
cedure by reducing the mean square error (χ2) [46]: 

χ2 = χ2
psi + χ2

del (5.a)   

χ2=
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
M − P− 1

√

{
∑M

j=1

([
ψexp

(
ωj
)
− ψcal

(
ωj
)

δψ
(
ωj
)

]2

+

[
Δexp

(
ωj
)
− Δcal

(
ωj
)

δΔ
(
ωj
)

]2)}

(5.b)  

where M and P are the number of data and parameters, respectively; ψexp 

and ψcal are the Ψ from the experiment and calculation, respectively; 
Δexp and Δcal are the Δ from the experiment and calculation at a specific 
frequency ωj, respectively; and (δψ, δΔ) denotes measurement errors in 
(Ψ, Δ). The Drude-Lorentz equation is given by [46,47,49]: 

ε(ω) = ε∞ +
∑N

k=1

ω2
p,k

ω2
0,k − ω2 − iωΓk

(6)  

where ε∞ shows high-frequency dielectric constants. The parameters 
ωp,k , ω0,k , and Γk declare the plasma frequency, the transverse fre-
quency (eigenfrequency), and the linewidth (scattering rate), respec-
tively, of the k-th oscillators. The Bruggeman EMA equation is given by 
[46,47]: 

fa
εa − ε
εa + 2ε + (1 − fa)

εb − ε
εb + 2ε = 0 (7)  

εa and εb are the dielectric constant of components a and b, respec-
tively. fa and (1 − fa) indicates the volume fraction of components a and 
b, respectively. The real part of optical conductivity (σ1) is related to the 
imaginary part of the dielectric constant (ε2) through the following 
equation: 

σ1(ω) =
ωε2

4π (8) 

The spectral weight (SW) measures the effective number of electrons 
for a particular frequency (or energy) range excited by an incoming 
photon, and it is given by [50]: 

SW(ωc) =

∫ωc

0

σ1(ω)dω =
πne2

2m∗
(9)  

whereas n represents the density of the electron (number of electrons per 
volume), ωc is cut-off frequency, and m* is the effective mass of the 
electron. 

2.3. Density functional theory (DFT) calculation 

We performed DFT calculations based on norm-conserving pseudo-
potentials [51] and optimized pseudoatomic localized basis functions 
implemented on OpenMX code [52]. The basis function was expanded 
by a linear combination of multiple pseudoatomic orbitals generated 
using a confinement scheme [53,54]. In our DFT calculations, we treated 
the exchange-correlation functional by using generalized-gradient 
approximation by Perdew, Burke, and Enzerhof (GGA–PBE) [55]. The 
Bi orbitals were specified by Bi8.0-s3p2d2f1, which means that the cutoff 
radii of the Bi atom is 8.0 Bohr and the calculations included three 

Fig. 1. The optical calculation model based on a 5-layer Fresnel equation is used in this work.  

Table 2 
Cauchy Parameters of Al2O3 and Glass substrates [48].  

Parameter Al2O3 Glass substrate 

A 1.559 1.5028 
B 0.0052 0.0053 
C 0.00004 0.0004  
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s-orbitals, two p- and d-orbitals, and one f-orbitals. The cutoff energy 
was set to 300 Ry for the charge density. During the structural relaxa-
tion, the energy and force convergence criteria are 10− 8 eV and 5 ×
10− 3 eV/Å, respectively. We designed a bulk and thin film of Bi crystal 
model with the lattice parameter a = b = 4.538 Å from Ref. [56], as 
shown in Fig. 2. We added more than 25 Å of vacuum area on the Bi thin 
film model to appeal to the interactions between two adjacent layers on 
the z-direction. The 8 × 8 × 8 k-point grid was used to discretize the First 
Brillouin Zone (FBZ) for both bulk and thin film Bi models. 

3. Results and discussion 

Information regarding the structure and morphology is required to 
establish the quality of the deposited film and to improve the effec-
tiveness of SE measurements in describing the sample. This information 
supports creating an optical model and using an acceptable dispersion 
law to determine the dielectric function in the SE process. The AFM 
images and profiles of Bi films with different thicknesses (tBi = 25 nm, 
tBi = 20 nm, tBi =15 nm, and tBi = 5 nm), are shown in Fig. 3 with 
roughness average (Ra) of 3.05 nm, 3.28 nm, 4.09 nm, and 5.01 nm, 
respectively. 

To show this correlation, we present the structure of selected Bi films 
(tBi = 25 nm, 20 nm, and 15 nm) investigated by cross-section view SEM, 
as shown in Fig. 4. Fig. 4(b) depicts a cross-section schematic repre-
sentation of the structure of the Bi films based on the SEM and AFM data. 
The film features a discontinuous near-percolation structure at tBi = 15 
nm. For tBi = 20 nm and 25 nm, the films exhibit a continuous structure 
with few voids. 

Light scattering occurs when materials contain inhomogeneous 
characteristics, including porous and patterned structures. When sam-
ples depolarize, fully polarised light employed as a probe in ellipsometry 

is turned into partly polarised light [46]. In some cases, depolarization 
of incident light affects the measurement seriously, although this effect 
depends completely on the types of instruments [46]. When samples 
have a depolarization effect, totally polarized light used as a probe in 
ellipsometry is transformed into partially polarized light. In this case, 
the measurement error of the RAE instrument becomes quite large. In 
the RAE instrument, the polarization state of this reflected light is mis-
interpreted as elliptical polarization since this instrument assumes 
totally polarized light for reflected light. This result confirms that the 
measurement error of RAE increases when the reflected light is partially 
polarized. In general, when samples have inhomogeneous structures, 
including porous and patterned structures, light scattering occurs. In our 
samples, depolarization manifests in ψ data, in which the data is 
somehow symmetrized around 45◦ with respect to the model calculation 
for ψ (in this case, we use a continuous sample surface model). In the 
RAE configuration, we are using a polarization angle of 45◦, which 
means we have rp and rs with the same amplitude; thus, we symmetrized 
the model around 45◦ in order to fit ψ data. Meanwhile, we can fit the Δ 
data quite well using the same model. 

Fig. 5 depicts the experimental ψ and Δ of Bi thin films obtained from 
SE at an incident angle of 70◦. A significant increase (decrease) of ψ (Δ)

is apparently seen as the thickness of Bi films is decreased, indicating the 
change of related optical constant. The overall mean squared error (MSE 
or χ2) of the fit is 0.08, which is less than 1, indicating a good fitting 
result. 

The complex dielectric constant of Bi thin films extracted by fitting 
the Drude-Lorentz model to SE data is depicted in Fig. 6. At tBi = 5 nm, 
the most important are a negative real part (ε1) values below 2 eV, as 
shown in Fig. 6(a). The previous studies indicate that the negative ε1 
values in the UV–Vis ranges, and therefore the reported plasmonic 
properties of Bi nanostructures in this region are generated by the 

Fig. 2. Bi unit cell and Brillouin zone: (a) Bulk Bi and (b) 5 nm Bi thin film.  
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excitation of interband transitions with high oscillator strength [40]. 
This result refers to a new paradigm in photonics, notably the potential 
of obtaining interband plasmonic properties in UV–Vis without free 
carriers [57,58]. Therefore, the optical resonances observed for Bi 
nanostructures in the UV–Vis regions may be based only on the excita-
tion of interband transitions, with no contribution from free carriers [38, 
59]. 

The real part (ε1) and the imaginary part (ε2) of the dielectric con-
stant decreases as the thickness change from 25 nm to 15 nm for the 
spectral range of 1.4 eV to 5.3 eV; however, it increases significantly 
when the thickness goes to 5 nm for the spectral range of 1.4 eV to 3.5 eV 
and from 4.1 eV to 5.3 eV. It is apparent that ε2 is decreases in the range 
of 3.5 eV to 4.1 eV. In case the thickness of the Bi layer is very thin, the 
morphology of the layer will not be connected, and the islands will be 
formed due to the occurrence of inhomogeneity during the growth 
process, yielding to the formation of the air/void gaps [46]. 

In Fig. 7(a), the real part of optical conductivity (σ1), which is related 
to the absorption of the light (hence the ε2), shows very distinct features. 
A broad hump and three broad peaks occur at 2.0 eV and 2.8 eV; 3.8 eV; 
5.0 eV, respectively. The origin of these features depends on the 

dimensionality of the Bi. Toudert et al. argued that the absorption fea-
tures of Bi films with a thickness varying from 78 nm to 11 nm possess 
the same absorption features as the bulk Bi in the sense that absorption 
peak positions do not seem to change. At the same time, their values are 
decreased as the thickness is reduced [40,6]. It suggests that the elec-
tronic structure of the bulk Bi can be employed for the electronic tran-
sition assignment as the origin of the related absorption features. 

Furthermore, the σ1 decreases as the thickness change from 25 nm to 
15 nm, which might be due to the reduction of the density of states 
(DOS) of p-orbital. In this case, the thickness reduction, hence reducing 
the volume, will lead to a reduction in the number of electrons involved 
in the optical transition. Should the thickness reduces further to 5 nm, 
one may expect that the σ1 will decrease further; however, it increases 
significantly. This unexpected result suggests that the DOS of Bi with a 
thickness of 5 nm increases dramatically; hence the number of electrons 
per volume per frequency interval is increased. This property can be 
represented accurately by Fig. 7(b), which depicts the change of the σ1 
(i.e., Δσ1). 

Fig. 7(c) depicts the spectral weight analysis of Bi films in the area 
that is related to the change of the absorption features (hence the 

Fig. 3. The AFM images and profiles of Bi films with (a) tBi = 25 nm, (b) tBi = 20 nm, (b) tBi = 15 nm, and (d) tBi = 5 nm.  

Fig. 4. Structure of selected Bi films (tBi = 25 nm, tBi = 20 nm, and tBi = 15 nm). (a) Cross-section view SEM and (b) Cross-section schematic representation of the 
Bi films. 
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number of the electrons) as the thickness is decreased from 25 nm to 5 
nm. Area I includes a frequency range from 1.4 eV to 3.5 eV, which 
covers the absorption hump peaked at 2.0 eV and 2.8 eV, while area II 
comprises a frequency range from 3.5 eV to 4.5 eV, which covers the 
absorption peak at 3.8 eV. Area III includes a frequency range from 4.5 
eV to 5.3 eV, which covers the absorption peak at 5.0 eV. The spectral 
weight value in areas I, II, and III decreases with reducing thickness from 
25 nm to 15 nm, indicating a carrier downward on the bands associated 
with the absorption peaks located at that particular range, as described 

in the previous section. The spectral weight significantly rises at the 5- 
nm thickness, indicating the addition of the DOS on the band associ-
ated with the absorption peaks located at that range (see Fig. 8). Another 
noticed thing is the possibility of the transition from a three dimension 
system to two dimensions when the thickness reduces from 15 nm to 5 
nm due to the quantum confinement effect. The increase of the DOS at a 
lower dimension could indicate the quantum confinement effect in our 
samples, suggesting that the electron movement might be restricted in 
quasi-two-dimensional space [60]. As the dimension becomes lower, the 

Fig. 5. The ψ and Δ of Bi thin films measured at an incidence angle of 70◦ with a thickness of (a) tBi = 25 nm, (b) tBi = 20 nm, (c) tBi = 15 nm, and (d) tBi = 5 nm. The 
solid lines show the experimental results, and the dashed lines show the best match of the fitting result using the optical model in Fig. 1. 

Fig. 6. Complex dielectric constant of Bi films. (a) The real part of complex dielectric constants (ε1) and (b) the imaginary part of dielectric constants (ε2).  
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surface states of Bi film might contribute to the absorption features in 
the σ1. The thermal de Broglie wavelength λD (λD = h /

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2πmkBT

√
) pro-

vides a good approximation of the full-length scale of the quantum 
confinement effect [61,62]. At room temperature, λD is 13.6 nm for 
semiconductor electrons with a typical effective mass m* = 0.1 m0 (m0: 
the rest mass of an electron in vacuum), indicating that the crystal 
diameter is smaller than 13.6 nm. 

For a more thorough study, we conducted DFT calculation to 
examine the obtained optical conductivity data in relation with the band 
structure of bulk Bi compared with Bi thin film with a thickness of 13 
bilayers (~5 nm), as shown in Fig. 8. The conduction (CB) and valence 
bands (VB) overlapping with an indirect negative band gap is typical of 
bulk Bi band structures at the Fermi level (see Fig. 8.a). This leads to the 
formation of small electron and hole pockets on the Fermi surface, which 

Fig. 7. (a) The real part of optical conductivity (σ1) of Bi films (b) The difference in the real part of optical conductivity between Bi with a thickness of 25 nm and 
that of below 25 nm. (c) Spectral weight analysis for three intervals of absorption area of interest. Area I involves an optical range of 1.4 eV – 3.5 eV; area II involves 
an optical range of 3.5 eV – 4.5 eV; area III involves an optical range of 4.5 eV – 5.3 eV. 

Fig. 8. Band structures (left) and projected density of states, DOS (right) of Bi from density functional theory (DFT) calculations: (a) Bulk Bi and (b) 5 nm Bi thin film.  
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influence the low-energy electron dynamics of these materials. The 
electron pocket is at point L, whereas the hole pocket is at point A. 
Remarkably, the indirect band gap extends over the whole Brillouin 
zone. Similar band structure calculation can also be used to describe the 
electronic transition assignment [25,63], as they provide a similar 
description of the electronic structure of bulk Bi. 

The electronic band structure and DOS of the Bi films with 13 BL 
thickness are plotted in Fig. 8(b). It is clear that the effect of confinement 
is most noticeable at K, Γ, and M points. The states between Γ and M 
remain relatively close to the Fermi level. We refer to Ref. [1,9,30] for 
further information. The band structure is dominated by free electron 
states and an almost flat band, which lies close to the Fermi level. The 
free electron states have the character of the mixture of the px and py 

orbital, while the flat band has the essence of the pz orbital. All these 
band formations lead to spikes or singularity in the corresponding DOS 
contribute to the higher absorption, as compared to bulk Bi. 

4. Conclusion 

In summary, we have measured spectroscopic ellipsometry on Bi thin 
films (tBi = 25 nm, 20 nm, 15 nm, and 5 nm) supported by DFT calcu-
lation. We observe a broad absorption hump and three broad absorption 
peaks, which occur at 2.0 eV and 2.8 eV; 3.8 eV, and 5.0 eV, respectively, 
for Bi thickness of 25 nm, 20 nm, and 15 nm. These absorption features 
might be originated from the electronic transitions involving the px, py 
orbitals to pz orbital throughout the high symmetry line of Bi’s first 
Brillouin zone. The absorption peaks decreased as the thickness reduced 
from 25 nm to 15 nm. However, there is a considerable rise in those 
absorption peaks at tBi = 5 nm, which is accompanied by additional 
absorption peaks at 2.6 eV, 3.0 eV, and 4.1 eV. This anomalous is 
possibly due to the quantum confinement effect yield to the increase of 
DOS. Our research may give insight into the future development of Bi- 
enabled devices. 
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