Secondary fragments of proton and helium ion beams in High-Density Polyethylene phantom: A Monte Carlo simulation study

Efendi, M. Arif and Ying, Chee Keat (2024) Secondary fragments of proton and helium ion beams in High-Density Polyethylene phantom: A Monte Carlo simulation study. Nuclear Engineering and Technology, 56 (5). 1754 – 1761. ISSN 17385733

[thumbnail of 1-s2.0-S1738573323005843-main.pdf] Text
1-s2.0-S1738573323005843-main.pdf - Published Version
Restricted to Registered users only

Download (5MB) | Request a copy

Abstract

In hadrontherapy, secondary fragments are generated by nuclear interactions of the incident heavy ion beam with the atomic nuclei of the target. It is important to determine the yield of production and the dose contribution of these secondary fragments in order to determine the radiobiological effectiveness more accurately. This work aims to fully identify the secondary fragments generated by nuclear interactions of proton and helium (4He) ion beams in a High-Density Polyethylene (HDPE) target and to investigate the dose contributions by secondary fragments. Incident protons with energies of 55.90 MeV and 105.20 MeV and helium ions with energies of 52.55 MeV/u and 103.50 MeV/u in the HDPE phantom have been investigated by the means of Geant4 Monte Carlo (MC) simulations. Simulated results were validated using NASA Space Radiation Laboratory (NSRL) Bragg curves experimental data. The results showed that the dose contribution of secondary fragments deriving from helium ion beams is three times higher than in the case of proton beams. This is due to a higher production of nuclear fragments in the case of helium ion beams. This work contributes to a better understanding of secondary fragments generated by protons and helium ions in the HDPE target. © 2023 Korean Nuclear Society

Item Type: Article
Additional Information: Cited by: 0; All Open Access, Gold Open Access
Uncontrolled Keywords: Bragg curve; Geant4; Light-ion beams; Nuclear fragmentation; Secondary particles
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Faculty of Engineering > Nuclear and Physics Engineering Department
Depositing User: Rita Yulianti Yulianti
Date Deposited: 13 Mar 2025 01:07
Last Modified: 13 Mar 2025 01:07
URI: https://ir.lib.ugm.ac.id/id/eprint/13252

Actions (login required)

View Item
View Item