Optimizing the Synthesis of Lignin Derivatives from Acacia mangium to Improve the Enzymatic Hydrolysis of Kraft Pulp Sorghum Bagasse

Fatriasaria, Widya and Hamzah, Fajar Nur and Pratomo, Bagas Ikhsan and Fajriutami, Triyani and Ermawar, Riksfardini Anissa and Falah, Faizatul and Laksana, Raden Permana Budi and Ghozali, Muhammad and Iswanto, Apri Heri and Hermiati, Euis and Winarni, Ina (2020) Optimizing the Synthesis of Lignin Derivatives from Acacia mangium to Improve the Enzymatic Hydrolysis of Kraft Pulp Sorghum Bagasse. INTERNATIONAL JOURNAL OF RENEWABLE ENERGY DEVELOPMENT-IJRED, 9 (2). pp. 227-235. ISSN 2252-4940

[thumbnail of 28169] Text
28169
Restricted to Registered users only

Download (81kB)

Abstract

The present study is aimed at optimizing the synthesis of Amphipilic lignin derivatives (A-LD) from the isolated lignin of A.mangium black liquor (BL), using the one and two step acid isolation method, and commercial lignin (LS) was used as comparison. The experimental design was conducted using Taguchi method, which consisted of four parameters and two level factors, with reference to the matrix orthogonal array, L8, including temperature, reaction time, amount of polyethylene glycol diglycidylethers (PEGDE) and Kraft lignin (KL). Furthermore, the kraft pulp of sweet sorghum bagasse (SSB) was used as substrate in the enzymatic hydrolysis (NREL method), with addition of A-LD, whose functional group and surface tension were then characterised using ATR-FTIR and surface tension equipment. Conversely, an improvement in the reducing sugar yield (RSY) compared to the control was observed after adding various A-LDs to the substrate during enzymatic hydrolysis. This product was more prospective for L2S than others products under milder circumstances, due to the fact that it possesses the lowest surface tension. Also, Taguchi analysis demonstrated the treatment at 60 °C for 1 h with 3.0 g and 1.0 g of PEDGE and lignin, respectively as the optimum condition, while the amount of lignin present was included as a factor with the propensity to significantly affect A-LD L1S and LS. Therefore, it was established that the A-LDs from A. mangium kraft lignin require milder synthesis conditions, compared to other existing methods and despite the differences in optimum experimental condition for L2S and LS, the functional groups in the IR spectra possessed very identical characteristics.

Item Type: Article
Subjects: Q Science > QD Chemistry
Divisions: Faculty of Mathematics and Natural Sciences > Chemistry Department
Depositing User: Sri JUNANDI
Date Deposited: 25 Sep 2025 02:25
Last Modified: 25 Sep 2025 02:25
URI: https://ir.lib.ugm.ac.id/id/eprint/18083

Actions (login required)

View Item
View Item