Enhancement of the sensitivity of chalcone derived from vanillin as chemosensor agents for Hg(II) ions through cyclization reaction with arylhydrazine

RATNAWATI, Devi and KARTINI, Indriana and PRANOWO, Harno Dwi and KURNIAWAN, Yehezkiel Steven and WAHYUNINGSIH, Tutik Dwi (2024) Enhancement of the sensitivity of chalcone derived from vanillin as chemosensor agents for Hg(II) ions through cyclization reaction with arylhydrazine. Chinese Journal of Analytical Chemistry, 52 (5): 100395. ISSN 18722040

[thumbnail of 32. 1-s2.0-S1872204024000409-main.pdf] Text
32. 1-s2.0-S1872204024000409-main.pdf - Published Version
Restricted to Registered users only

Download (2MB) | Request a copy

Abstract

Water pollution is currently a major problem worldwide. Given its detrimental effects on health, Hg(II) is considered an extremely hazardous heavy metal contaminant, even at low doses. Heterocyclic compounds have been thoroughly evaluated as the chemosensor agents for Hg(II) detection. However, they suffer from poor sensitivity. In this study, we prepared two fluorescence chemosensor agents from vanillin via several steps, i.e., etherification, Claisen–Schmidt, and cyclocondensation reactions to yield N-phenyl- and N-pyridine-pyrazoline compounds. Products characterization was accomplished via spectroscopic techniques. Chalcone, N-phenyl-, and N-pyridine-pyrazoline derivatives were successfully obtained at 87.04%, 90.91%, and 91.73% yields, with limits of detection of 156,840, 65.810, and 161.011 nM, respectively. These results show that the conversion of chalcone to pyrazoline structure improved the sensitivity for Hg(II) detection at the nanomolar level, which is 2384 times lower than that for chalcone. Further spectroscopic investigations through Job's plot, Fourier-transform infrared spectroscopy, and proton-nuclear magnetic resonance analyses revealed that Hg(II) ions were chelated with two nitrogen atoms of pyrazoline. Thus, this phenomenon can explain the considerable sensitivity enhancement for Hg(II) detection. N-Phenyl-pyrazoline is the more sensitive chemosensor to Hg(II) compared with N-pyridine-pyrazoline because the more nitrogen groups in the binding site, the less selective and sensitive the compound. This finding is also supported by the higher binding constant value of N-phenyl-pyrazoline (9.416 × 102 mol−1) than N-pyridine-pyrazoline (1.771 × 102 mol−1). Furthermore, N-phenyl-pyrazoline can be applied in the direct quantification of Hg(II) in tap and groundwater samples with a validity parameter in a range of 80.97%–103.54%.

Item Type: Article
Uncontrolled Keywords: Chemosensor; Detection; Fluorescence; Hg(II) ions; Pyrazoline
Subjects: Q Science > QD Chemistry
Divisions: Faculty of Mathematics and Natural Sciences > Chemistry Department
Depositing User: Ismu WIDARTO
Date Deposited: 02 Jun 2025 03:48
Last Modified: 02 Jun 2025 03:48
URI: https://ir.lib.ugm.ac.id/id/eprint/18697

Actions (login required)

View Item
View Item