Analysis of EMG Signals during Stance and Swing Phases for Controlling Magnetorheological Brake applications

Nazmi, Nurhazimah and Azizi Abdul Rahman, Mohd and Amri Mazlan, Saiful and Adiputra, Dimas and Bahiuddin, Irfan and Kashfi Shabdin, Muhammad and Afifah Abdul Razak, Nurul and Hatta Mohammed Ariff, Mohd (2020) Analysis of EMG Signals during Stance and Swing Phases for Controlling Magnetorheological Brake applications. Open Engineering, 11 (1). 112 – 119. ISSN 23915439

[thumbnail of Nurhazimah 2020.pdf] Text
Nurhazimah 2020.pdf - Published Version
Restricted to Registered users only

Download (850kB) | Request a copy

Abstract

The development of ankle foot orthoses (AFO) for lower limb rehabilitation have received significant attention over the past decades. Recently, passive AFO equipped with magnetorheological brake had been developed based on ankle angle and electromyography (EMG) signals. Nonetheless, the EMG signals were categorized in stance and swing phases through visual observation as the signals are stochastic. Therefore, this study aims to classify the pattern of EMG signals during stance and swing phases. Seven-time domains features will be extracted and fed into artificial neural network (ANN) as a classifier. Two different training algorithms of ANN namely Levenberg-Marquardt (LM) and Scaled Conjugate Gradient (SCG) will be applied. As number of inputs will affect the classification performance of ANN, different number of input features will be employed. In this study, three participants were recruited and walk on the treadmills for 60 seconds by constant the speed. The ANN model was designed with 2, 10, 12, and 14 inputs features with LM and SCG training algorithms. Then, the ANN was trained ten times and the performances of each inputs features were measured using classification rate of training, testing, validation and overall. This study found that all the inputs with LM training algorithm gained more than 2 average classification rate than SCG training algorithm. On the other hand, classification accuracy of 10, 12 and 14 inputs were 5 higher than 2 inputs. It can be concluded that LM training algorithm of ANN was performed better than SCG algorithm with at least 10 inputs. © 2021 N. Nazmi et al., published by De Gruyter 2021.

Item Type: Article
Additional Information: Cited by: 4; All Open Access, Gold Open Access
Uncontrolled Keywords: EMG signals; TD features; ANN; Gait phases; MR brake
Subjects: T Technology > TJ Mechanical engineering and machinery
Divisions: Vocational School
Depositing User: Sri JUNANDI
Date Deposited: 10 Apr 2025 03:17
Last Modified: 10 Apr 2025 03:17
URI: https://ir.lib.ugm.ac.id/id/eprint/14526

Actions (login required)

View Item
View Item