Ethanolic extract of sappan wood (Caesalpinia sappan L.) inhibits MCF-7 and MCF-7/HER2 mammospheres' formation: An in vitro and bioinformatic study

Novitasari, Dhania and Muntafiah, Laeli and Sari, Nur Fitra and Meiyanto, Edy and Hermawan, Adam (2021) Ethanolic extract of sappan wood (Caesalpinia sappan L.) inhibits MCF-7 and MCF-7/HER2 mammospheres' formation: An in vitro and bioinformatic study. Indonesian Journal of Biotechnology, 26 (3). 133 – 141. ISSN 08538654

[thumbnail of Dhania_FA.pdf] Text
Dhania_FA.pdf - Published Version
Restricted to Registered users only

Download (8MB) | Request a copy

Abstract

One of the mechanisms of cancer cell resistance toward chemotherapy is through cancer stem cells (CSCs), which are characterized by excessive activation of regulator proteins such as human epidermal receptor 2 (HER2). Sappan wood (Caesalpinia sappan L.) contains brazilin and brazilein that exhibit cytotoxic effects on several cancer cell lines. We aimed to explore the potency of the ethanolic extract of sappan (EES) in CSCs through bioinformatic analyses and by using a three-dimensional (3D) breast cancer stem cells (BCSCs) for in vitro assay with two different models (i.e., BCSCs and HER2- BCSCs) in order to identify the potential therapeutic targets of genes (PTTGs). Bioinformatic analyses identified PTTGs, which were further analyzed by gene ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, protein-protein interaction (PPI) networks, and hub protein selection. Mammospheres were cultured under conditioned media. The cytotoxic effects of EES were then measured by direct counting and based on the mammosphere-forming potential (MFP). Bioinformatic analysis disclosed PIK3CA and TP53 as PTTGs in BCSCs and HER2-BCSCs, respectively. In addition, the KEGG pathway analyses also demonstrated that PTTGs could regulate the ERBB pathway. EES thus demonstrated cytotoxicity and inhibited the formation of mammospheres. Collectively, EES exhibited excellent potential for further development as an inhibitor of cancer stem cells in breast cancer. © 2021 THE AUTHOR(S).

Item Type: Article
Additional Information: Cited by: 0; All Open Access, Gold Open Access
Uncontrolled Keywords: Bioinformatics; breast cancer stem cells; sappan wood (Caesalpinia sappan L.)
Subjects: R Medicine > RS Pharmacy and materia medica
Divisions: Faculty of Pharmacy
Depositing User: Sri JUNANDI
Date Deposited: 02 Sep 2024 07:16
Last Modified: 02 Sep 2024 07:16
URI: https://ir.lib.ugm.ac.id/id/eprint/5899

Actions (login required)

View Item
View Item