Setyawan, Martin A. and Mahardika, Muslim and Sriani, Tutik and Miki, Norihisa and Prihandana, Gunawan S. (2021) Precision electropolishing on fabricating ss 316l microchannel – a taguchi approach. International Journal on Engineering Applications, 9 (4). 209 – 216. ISSN 22812881
Full text not available from this repository. (Request a copy)Abstract
This paper presents the fabrication of a microchannel on stainless steel 316L (SS 316L) by electropolishing method. Machining parameters such as applied voltage, concentration of NaCl in the electrolyte solution and machining gap between tool and workpiece have been optimized in this electropolishing process. The Taguchi method is adopted to ascertain the optimum process parameters in order to increase maximum material removal rate using L9 orthogonal array. Pareto analysis of variance is employed in order to analyze the machining process parameters to the material removal rate. The result shows that the optimal parameters to achieve the maximum material removal rate is by using a combination of 10 V as applied voltage, NaCl concentration of 15 wt., and setting 1 cm as the machining gap. It has been also found out that in order to have relatively high material removal without sacrificing the surface quality and the geometrical accuracy of the microchannel produced, applied voltage at 7 V, NaCl concentration of 7 wt. and machining gap of 3 cm is the best combination of the electropolishing parameters. Copyright © 2021 Praise Worthy Prize S.r.l.-All rights reserved. © 2021 Praise Worthy Prize S.r.l.-All rights reserved.
Item Type: | Article |
---|---|
Additional Information: | Cited by: 6 |
Uncontrolled Keywords: | Electropolishing; SS 316L; Taguchi; Manufacturing Innovation |
Subjects: | T Technology > TJ Mechanical engineering and machinery |
Divisions: | Faculty of Engineering > Mechanical and Industrial Engineering Department |
Depositing User: | Sri JUNANDI |
Date Deposited: | 05 Oct 2024 22:04 |
Last Modified: | 05 Oct 2024 22:04 |
URI: | https://ir.lib.ugm.ac.id/id/eprint/8777 |